13 research outputs found

    Earables: Wearable Computing on the Ears

    Get PDF
    Kopfhörer haben sich bei Verbrauchern durchgesetzt, da sie private Audiokanäle anbieten, zum Beispiel zum Hören von Musik, zum Anschauen der neuesten Filme während dem Pendeln oder zum freihändigen Telefonieren. Dank diesem eindeutigen primären Einsatzzweck haben sich Kopfhörer im Vergleich zu anderen Wearables, wie zum Beispiel Smartglasses, bereits stärker durchgesetzt. In den letzten Jahren hat sich eine neue Klasse von Wearables herausgebildet, die als "Earables" bezeichnet werden. Diese Geräte sind so konzipiert, dass sie in oder um die Ohren getragen werden können. Sie enthalten verschiedene Sensoren, um die Funktionalität von Kopfhörern zu erweitern. Die räumliche Nähe von Earables zu wichtigen anatomischen Strukturen des menschlichen Körpers bietet eine ausgezeichnete Plattform für die Erfassung einer Vielzahl von Eigenschaften, Prozessen und Aktivitäten. Auch wenn im Bereich der Earables-Forschung bereits einige Fortschritte erzielt wurden, wird deren Potenzial aktuell nicht vollständig abgeschöpft. Ziel dieser Dissertation ist es daher, neue Einblicke in die Möglichkeiten von Earables zu geben, indem fortschrittliche Sensorikansätze erforscht werden, welche die Erkennung von bisher unzugänglichen Phänomenen ermöglichen. Durch die Einführung von neuartiger Hardware und Algorithmik zielt diese Dissertation darauf ab, die Grenzen des Erreichbaren im Bereich Earables zu verschieben und diese letztlich als vielseitige Sensorplattform zur Erweiterung menschlicher Fähigkeiten zu etablieren. Um eine fundierte Grundlage für die Dissertation zu schaffen, synthetisiert die vorliegende Arbeit den Stand der Technik im Bereich der ohr-basierten Sensorik und stellt eine einzigartig umfassende Taxonomie auf der Basis von 271 relevanten Publikationen vor. Durch die Verbindung von Low-Level-Sensor-Prinzipien mit Higher-Level-Phänomenen werden in der Dissertation anschließ-end Arbeiten aus verschiedenen Bereichen zusammengefasst, darunter (i) physiologische Überwachung und Gesundheit, (ii) Bewegung und Aktivität, (iii) Interaktion und (iv) Authentifizierung und Identifizierung. Diese Dissertation baut auf der bestehenden Forschung im Bereich der physiologischen Überwachung und Gesundheit mit Hilfe von Earables auf und stellt fortschrittliche Algorithmen, statistische Auswertungen und empirische Studien vor, um die Machbarkeit der Messung der Atemfrequenz und der Erkennung von Episoden erhöhter Hustenfrequenz durch den Einsatz von In-Ear-Beschleunigungsmessern und Gyroskopen zu demonstrieren. Diese neuartigen Sensorfunktionen unterstreichen das Potenzial von Earables, einen gesünderen Lebensstil zu fördern und eine proaktive Gesundheitsversorgung zu ermöglichen. Darüber hinaus wird in dieser Dissertation ein innovativer Eye-Tracking-Ansatz namens "earEOG" vorgestellt, welcher Aktivitätserkennung erleichtern soll. Durch die systematische Auswertung von Elektrodenpotentialen, die um die Ohren herum mittels eines modifizierten Kopfhörers gemessen werden, eröffnet diese Dissertation einen neuen Weg zur Messung der Blickrichtung. Dabei ist das Verfahren weniger aufdringlich und komfortabler als bisherige Ansätze. Darüber hinaus wird ein Regressionsmodell eingeführt, um absolute Änderungen des Blickwinkels auf der Grundlage von earEOG vorherzusagen. Diese Entwicklung eröffnet neue Möglichkeiten für Forschung, welche sich nahtlos in das tägliche Leben integrieren lässt und tiefere Einblicke in das menschliche Verhalten ermöglicht. Weiterhin zeigt diese Arbeit, wie sich die einzigarte Bauform von Earables mit Sensorik kombinieren lässt, um neuartige Phänomene zu erkennen. Um die Interaktionsmöglichkeiten von Earables zu verbessern, wird in dieser Dissertation eine diskrete Eingabetechnik namens "EarRumble" vorgestellt, die auf der freiwilligen Kontrolle des Tensor Tympani Muskels im Mittelohr beruht. Die Dissertation bietet Einblicke in die Verbreitung, die Benutzerfreundlichkeit und den Komfort von EarRumble, zusammen mit praktischen Anwendungen in zwei realen Szenarien. Der EarRumble-Ansatz erweitert das Ohr von einem rein rezeptiven Organ zu einem Organ, das nicht nur Signale empfangen, sondern auch Ausgangssignale erzeugen kann. Im Wesentlichen wird das Ohr als zusätzliches interaktives Medium eingesetzt, welches eine freihändige und augenfreie Kommunikation zwischen Mensch und Maschine ermöglicht. EarRumble stellt eine Interaktionstechnik vor, die von den Nutzern als "magisch und fast telepathisch" beschrieben wird, und zeigt ein erhebliches ungenutztes Potenzial im Bereich der Earables auf. Aufbauend auf den vorhergehenden Ergebnissen der verschiedenen Anwendungsbereiche und Forschungserkenntnisse mündet die Dissertation in einer offenen Hard- und Software-Plattform für Earables namens "OpenEarable". OpenEarable umfasst eine Reihe fortschrittlicher Sensorfunktionen, die für verschiedene ohrbasierte Forschungsanwendungen geeignet sind, und ist gleichzeitig einfach herzustellen. Hierdurch werden die Einstiegshürden in die ohrbasierte Sensorforschung gesenkt und OpenEarable trägt somit dazu bei, das gesamte Potenzial von Earables auszuschöpfen. Darüber hinaus trägt die Dissertation grundlegenden Designrichtlinien und Referenzarchitekturen für Earables bei. Durch diese Forschung schließt die Dissertation die Lücke zwischen der Grundlagenforschung zu ohrbasierten Sensoren und deren praktischem Einsatz in realen Szenarien. Zusammenfassend liefert die Dissertation neue Nutzungsszenarien, Algorithmen, Hardware-Prototypen, statistische Auswertungen, empirische Studien und Designrichtlinien, um das Feld des Earable Computing voranzutreiben. Darüber hinaus erweitert diese Dissertation den traditionellen Anwendungsbereich von Kopfhörern, indem sie die auf Audio fokussierten Geräte zu einer Plattform erweitert, welche eine Vielzahl fortschrittlicher Sensorfähigkeiten bietet, um Eigenschaften, Prozesse und Aktivitäten zu erfassen. Diese Neuausrichtung ermöglicht es Earables sich als bedeutende Wearable Kategorie zu etablieren, und die Vision von Earables als eine vielseitige Sensorenplattform zur Erweiterung der menschlichen Fähigkeiten wird somit zunehmend realer

    MicroNAS: Memory and Latency Constrained Hardware-Aware Neural Architecture Search for Time Series Classification on Microcontrollers

    Full text link
    This paper presents MicroNAS, a system designed to automatically search and generate neural network architectures capable of classifying time series data on resource-constrained microcontrollers (MCUs) and generating standard tf-lite ML models. MicroNAS takes into account user-defined constraints on execution latency and peak memory consumption on a target MCU. This approach ensures that the resulting neural network architectures are optimised for the specific constraints and requirements of the MCU on which they are implemented. To achieve this, MicroNAS uses a look-up table estimation approach for accurate execution latency calculations, with a minimum error of only 1.02ms. This accurate latency estimation on MCUs sets it apart from other hardware-aware neural architecture search (HW-NAS) methods that use less accurate estimation techniques. Finally, MicroNAS delivers performance close to that of state-of-the-art models running on desktop computers, achieving high classification accuracies on recognised datasets (93.93% on UCI-HAR and 96.33% on SkodaR) while running on a Cortex-M4 MCU

    ARMart – AR-Based Shopping Assistant to Choose and Find Store Items

    Get PDF
    Supermarkets offer a wide range of products which makes it challenging for consumers to choose between the different options and find the items they are looking for. Augmented Reality (AR) applications, however, have a high potential to enrich real-world objects with information which can be leveraged to improve this process. We developed an application that runs on a regular smartphone and helps users to choose between packaged groceries based on factors such as calories or sugar, rated on a scale from red (bad) to green (good). Compared to previous work, there is no need for a priori knowledge about product locations making the system suitable for many use cases. Moreover, information maps precisely onto the outline of the product\u27s and not on the approximate shelf. To do so, no modifications of the objects, such as specialized tags, are necessary. Additionally, users can find items just by entering the name. Highlighting the packaging virtually helps to find the desired product. It is also possible to make a binary distinction between groceries that contain specific ingredients

    Design Space and Usability of Earable Prototyping

    Get PDF
    Earable computing gains growing attention within research and becomes ubiquitous in society. However, there is an emerging need for prototyping devices as critical drivers of innovation. In our work, we reviewed the features of existing earable platforms. Based on 24 publications, we characterized the design space of earable prototyping. We used the open eSense platform (6-axis IMU, auditory I/O) to evaluate the problem-based learning usability of non-experts. We collected data from 79 undergraduate students who developed 39 projects. Our questionnaire-based results suggest that the platform creates interest in the subject matter and supports self-directed learning. The projects align with the research space, indicating ease of use, but lack contributions for more challenging topics. Additionally, many projects included games not present in current research. The average SUS score of the platform was 67.0. The majority of problems are technical issues (e.g., connecting, playing music)

    Responsible, Automated Data Gathering for Timely Citizen Dashboard Provision During a Global Pandemic (COVID-19

    Get PDF
    Creating a public understanding of the dynamics of a pandemic, such as COVID-19, is vital for introducing restrictive regulations. Gathering diverse data responsibly and sharing it with experts and citizens in a timely manner is challenging. This article reviews methodologies of COVID-19 dashboard design and discusses both technical and non-technical challenges associated. Advice and lessons learned from building a citizen-focused, automated county-precision dashboard for Germany are shared. Within four months, the web-based tool had 5 million unique visitors and 70 million sessions. Three developers set up the basic version in less than one week. Early on, data was screen scraped. An iterative process improved timeliness by adding more fine-grained data sources. A collaborative online table editor enabled near real-time corrections. Alerting was setup for errors, and statistics apply for sanity checking. Static site generation and a content delivery network help to serve large user loads in a timely manner. The flexible design allowed to iteratively integrate more complex statistics based on expert knowledge built on top of the collected data and secondary data sources such as ICU beds and citizen movement

    Schlussbericht: Aura: Neues Verfahren zur Diagnose von Schlafapnoe

    Get PDF

    FLECTILE: 3D-printable soft actuators for wearable computing

    Get PDF
    Rapid prototyping and fast manufacturing processes are critical drivers for implementing wearable devices. This paper shows an exemplary method for building flexible, fully elastomeric, vibrotactile electromagnetic actuators based on the Lorentz force law. This paper also introduces the design parameters required for well-functioning actuators and studies the properties of such actuators. The crucial element of the actuator is a helical planer coil manufactured from "capillary" silver TPU (Thermoplastic polyurethane), an ultra-stretchable conductor. This paper leverages the novel material to manufacture soft vibration actuators in fewer and simpler steps than previous approaches. Best practices and procedures for building a wearable actuator are reported. We show that the dimension of the actuators are easily configurable and can be printed in batch-size-one using 3D printing. Actuators can be attached directly to the skin as all the components of FLECTILE are made from biocompatible polymers. Tests on the driving properties have confirmed that the actuator could reach a broad scope of frequency up to 200 Hz with a small voltage (5 V) required. A user study showed that vibrations of the actuator are well perceivable by six study participants under an observing, hovering, and resting condition

    Towards Respiration Rate Monitoring Using an In-Ear Headphone Inertial Measurement Unit

    Get PDF
    State-of-the-art respiration tracking devices require specialized equipment, making them impractical for every day at-home respiration sensing. In this paper, we present the first system for sensing respiratory rates using in-ear headphone inertial measurement units (IMU). The approach is based on technology already available in commodity devices: the eSense headphones. Our processing pipeline combines several existing approaches to clean noisy data and calculate respiratory rates on 20-second windows. In a study with twelve participants, we compare accelerometer and gyroscope based sensing and employ pressure-based measurement with nasal cannulas as ground truth. Our results indicate a mean absolute error of 2.62 CPM (acc) and 2.55 CPM (gyro). This overall accuracy is comparable to previous approaches using accelerometer-based sensing, but we observe a higher relative error for the gyroscope. In contrast to related work using other sensor positions, we can not report significant differences between the two modalities or the three postures standing, sitting, and lying on the back (supine). However, in general, performance varies drastically between participants

    PDMSkin – On-Skin Gestures with Printable Ultra-Stretchable Soft Electronic Second Skin

    Get PDF
    Innovative enabling technologies are key drivers of human augmentation. In this paper, we explore a new, conductive, and configurable material made from Polydimethylsiloxane (PDMS) that is capillary doped with silver particles (Ag) using an immiscible secondary fluid to build ultra-stretchable, soft electronics. Bonding silver particles directly with PDMS enables inherently stretchable Ag-PDMS circuits. Compared to previous work, the reduced silver consumption creates significant advantages, e.g., better stretchability and lower costs. The secondary fluid ensures self-assembling conductivity networks. Sensors are 3D-printed ultra-thin (200%. Therefore, printed circuits can attach tightly onto the body. Due to biocompatibility, devices can be implanted (e.g., open wounds treatment). We present a proof of concept on-skin interface that uses the new material to provide six distinct input gestures. Our quantitative evaluation with ten participants shows that we can successfully classify the gestures with a low spatial-resolution circuit. With few training data and a gradient boosting classifier, we yield 83% overall accuracy. Our qualitative material study with twelve participants shows that usability and comfort are well perceived; however, the smooth but easy to adapt surface does not feel tissue-equivalent. For future work, the new material will likely serve to build robust and skin-like electronics
    corecore